2024年10月23日(水) 16:20--17:50
理学研究棟 2階 201室
Luiz C. B. da Silva 氏 (University of Dundee)
Surfaces making a constant angle with a parallel transported direction
アブストラクト
In the last two decades, much effort has been dedicated to studying curves and surfaces according to their angle with a given direction. However, most findings were obtained using a case-by-case approach, and it is often unclear what is a consequence of the specificities of the ambient manifold and what could be generic. In this talk, we will present a theoretical framework to unify parts of these findings: We study curves and surfaces by prescribing the angle they make with a parallel transported vector field. For curves, it is shown that the characterization of Euclidean helices in terms of their curvature and torsion is also valid in any Riemannian manifold. Among other properties, we prove that surfaces making a constant angle with a parallel transported direction are extrinsically flat ruled surfaces. We also investigate the relation between their geodesics and the so-called slant helices; we prove that surfaces of constant angle are the rectifying surface of a slant helix, i.e., the ruled surface with rulings given by the Darboux vector field of the directrix. We characterize rectifying surfaces of constant angle; in other words, when their geodesics are slant helices. As a corollary, we show that if every geodesic of a surface of constant angle is a slant helix, then the ambient manifold is flat. Finally, we characterize surfaces in the product of a Riemannian surface with the real line making a constant angle with the vertical real direction.
横国大幾何トポロジーセミナー
Home