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1 The Herglotz integral formula and rigidity theorems

1.1 Notation and terminology

1. compact connected surface (M, g)

— M may have boundary ∂M but we often tacitly assume ∂M = ∅.

2. the Gauss curvature K = Kg

M+ = {x ∈M | K(x) > 0}

3. the traceless part of E = {A ∈ T ∗M ⊗ T ∗M | A(X,Y ) = A(Y,X)}

◦
E = {A ∈ E| trA = 0}

A =
1

2
(trA)g +

◦
A

Â =
1

2
(trA)g −

◦
A

4. the cofactor tensor Â of A: J ∈ End(TM) is such that J2 = −1 and trgJ = 0.

Â(X,Y ) = A(JX, JY )

⟨Â, A⟩ = 2detA

5. Codazzi tensor A ∈ Γ(E):
∇XA(Y, Z) = ∇ZA(Y,X)

divÂ = (Ai
j;i) = 0

6. The determinant norm of E or polarization of det :

((A,B)) := detg

(
A+B

2

)
− detg

(
A−B

2

)
=

1

2
⟨Â, B⟩, sgn = (+−−)

7. conformal classes [θ] and [θ]+, θ ∈ Γ(E) :

[θ] = {vθ ∈ Γ(E)| v ∈ C∞(M)}
[θ]+ = {e2uθ ∈ Γ(E)| u ∈ C∞(M)} ⊂ [θ]

8. θ ∈ Γ(E) is within range of g
def⇐⇒ ∃η ∈ Γ(TM) such that

g +
1

2
Lηg ∈ [θ]+.
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9. Eδ, δ ∈ C∞(M) and Eθ, θ ∈ Γ(Eδ) ⊂ Γ(E)

Eδ := {θ ∈ E| detgθ = δ}, Eδ
± := {θ ∈ Eδ| θ is positive/negative definite}

g

(+)

◦
E = Eg

(−−)

Eδ
+

Eδ
−

Figure 1 E ∩ (T ∗
pM ⊗ T ∗

pM), δ > 0

Eθ := {A ∈ E| ((θ,A)) = 0} ≃ TθE
δ

g

Eθ

θ θ̂

E0

Figure 2 Eθ ∥ TθE
det θ, det θ > 0 ⇒ (( , ))|Eθ < 0.
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1.2 The Herglotz formula

Proposition 1.1 (The Herglotz integral formula). ν denotes the outward unit normal along ∂M .

Assume : θi ∈ Γ(Eδ) are Codazzi tensors, and g + 1
2Lηig = viθi, i = 1, 2.

Then :

∫
M

(v1 + v2) det(θ1 − θ2) dµ =

∫
∂M

(θ̂1 − θ̂2)(ν, η1 − η2) ds.

Proof. From (1) and (2) below and the divergence theorem:

(1) (v1 + v2) det(θ1 − θ2) = ((θ1 − θ2, Lη1−η2g)):

r.h.s. = ((θ1 − θ2, 2(v1θ1 − v2θ2))) = ((θ1 − θ2, (v1 + v2)(θ1 − θ2))) = l.h.s. because det θ1 = det θ2 = δ.

(2) ((θ1 − θ2, Lη1−η2
g)) = div((θ̂1 − θ̂2)(·, η1 − η2)):

((θ1 − θ2, Lη1−η2g)) =

〈
θ̂1 − θ̂2,

1

2
Lη1−η2g

〉
=

〈
θ̂1 − θ̂2,∇(η1 − η2)

〉
and div(θ̂1 − θ̂2) = 0.

Lamma 1.2. det θ1 = det θ2 ⇒ θ1 − θ2 ∈ Eθ1+θ2 .

Proof. ((θ1 + θ2, θ1 − θ2)) = ((θ1, θ1))− ((θ2, θ2)) = det θ1 − det θ2 = 0.

g

0

[g]

◦
E

θ1

θ2

θ1 − θ2

θ1 + θ2

[θ1 + θ2]

Eθ1+θ2

(+)

(−−)

Figure 3 θ1 + θ2 ⊥det θ1 − θ2 in E

Corollary 1.3. det θ1 = det θ2 and det(θ1 + θ2) > 0⇒ det(θ1 − θ2) < 0 unless θ1 = θ2.

Proof. (( , )) is negative definite on Eθ1+θ2 (Figure3).
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Proposition 1.4 (The Herglotz integral formula in practicable form).

Assume :

(i) det θ1 = det θ2 > 0;

(ii) both θ1 and θ2 are Codazzi tensors;

(iii) both θ1 and θ2 are within range of g;

(iv) if M has boundary,

det θ1 = det θ2 = 0 on ∂M ((i) overridden) and

∂M consists of curves whose tangent is the nullity of both θ1 and θ2.

Then : either θ1 = θ2 or θ1 = −θ2;

Proof. Replace θ2 by −θ2 if necessary, and we may assume det(θ1 + θ2) > 0.

(iv) ⇒ the boundary integral of Proposition 1.1 = 0 since θ̂i(ν, ·) = θi(Jν, J ·) = 0 on ∂M .

(iii) ⇒
∫
M

(v1 + v2) det(θ1 − θ2) dµ = 0 with v1 + v2 > 0.

Corollary 1.3 ⇒ θ1 = θ2.

1.3 Rigidity theorems

Lamma 1.5 (Hadamard). If ∂M = ∅ and K > 0, the 2nd fundamental form of an isometric immersion

of M in R3 is withn range of g (Figure 4).

−r ∂
∂r

η

M ⊂ R3

Figure 4 The condition (iii): η ∈ Γ(TM) is the orthogonal projection of −r ∂
∂r

to TM .

Theorem 1.6 (Cohn-Vossen 1927, Herglotz 1943). A closed surface in R3 with K > 0 is rigid.
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— pou sto: ∂M = ∅, M ⊂ R3 (immersion) ⇒M+ ̸= ∅.

Lamma 1.7 (Kuiper). If M+ ⊂ R3 is connected and
∫
M+

K dµ = 4π, the 2nd fundamental form of M+

is within range of g and ∂M+ consists of curvature lines of principal curvature 0 (Figure 5).

Proof. The image of the Gauss map of ∂M+ contains only finitely many points by Kuiper’s tightness

argument which extends the Hadamard theorem (Lemma 1.5).

Theorem 1.8 (Alexandorov 1938). If M+ ⊂ R3 is connected and
∫
M+

K dµ = 4π, M+ is rigid.

x y

z

M+

∂M+

Figure 5 M+ :
√

x2 + y2 −
√
1− z2 =

√
2

...

Theorem 1.8 says that the maximal region M+ of positively curved part of a surface has a tendency to

be unbendable. Moreover in some examples the rigidity property of M+ spreads over the whole of M .

Theorem 1.9 (Nirenberg 1963). A torus of revolution is rigid.

...

References
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• M. Spivak, A comprehenive introduction to differential geometry, Publish or Perish, 1975.
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2 An intrinsic formulation

2.1 Σ(M, g, δ)

Definition 2.1. (i) For δ ∈ C∞(M),

Σδ = Σ(M, g, δ) = {θ ∈ Γ(Eδ)| Λδθ = 0},

Λδ : Γ(Eδ)→ Γ(TM); Λδθ = div θ̂ = (θ̂i
j
;j).

(ii) (the linearization of Λδ) For θ ∈ Γ(Eδ),

λθ : Γ(Eθ)→ Γ(TM); λθα = div α̂

(iii) C : Γ(E \ E0)→ Γ(TM);

C(θ) =
θ(div θ̂, ·)
det θ

depends only on [θ]+. We say [θ]+ is a conformally Codazzi class if dC(θ) = 0.

Lamma 2.2. (i) c ∈ R, θ ∈ Σδ ⇒ cθ ∈ Σc2δ.

(ii) [θ] contains at most one Codazzi tensor up to a constant multiple.

(iii) For θ ∈ Γ(E \ E0),

∃ Codazzi tensor ∈ [θ]+ ⇐⇒ [θ]+ is a coformally Codazzi class and [C(θ)] = 0 ∈ H1(M,R).

(iv) The formal adjoint of λθ is given as λ∗
θη = −1

2
L̂ηg + vθ̂, v =

1

|θ|2
⟨θ,∇η⟩.

(v) kerλ∗
θ = {η ∈ Γ(TM)| Lηg ∈ [θ]}.

...

• Relation to the surface theory: N(k) denotes 3-dim space form of constant curvature k

(the 2nd f. f. of (M, g)→ N(k) ) ∈ Σ(M, g,Kg − k).

• Rigidity & Unbendability:

θ ∈ Γ(Eδ) is ‘rigid’← Σ(M, g, δ) = {±θ}

θ ∈ Γ(Eδ) is ‘unbendable’← kerλθ = 0 (near θ)

...

Proposition 2.3. Assume ∂M = ∅.

(i) χ(M) ̸= 0⇒ Σ(M, g,−1) = ∅.
(ii) χ(M) ̸= 0⇒ Σ(M, g, 0) = {0}.
(iii) χ(M) ≤ 0⇒ {±g} ⊂ Σ(M, g, 1) strictly, and dimkerλg = max{2,−3χ(M)}.

Proof. (i): Poincaré-Hopf. (ii): ruled surface theorem & singular ODE.

(iii): Riemann-Roch & orientatioin coveing trick.

The standard product metric g of T 2 is a counterexmple for the converses of (i) and (ii).
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2.2 Convexity conditions

Recall:
[θ]+ = {e2uθ ∈ Γ(E)| u ∈ C∞(M)} ⊂ [θ] = {vθ ∈ Γ(E)| v ∈ C∞(M)}

and

θ ∈ Γ(E) is within range of g
def⇐⇒ ∃η ∈ Γ(TM); g +

1

2
Lηg ∈ [θ]+

⇐⇒ ∃η ∈ Γ(TM),∃v ∈ C∞(M), v > 0; g +
1

2
Lηg = vθ.

Obviously
θ ∈ [g]+ is within range of g.

This is a special case of the following:

Proposition 2.4. The following are sufficient conditions for θ to be within range of g.

(i) θ is the 2nd fundamental form of M × {0} in M ×R with the metric of the form

G = e−2t
(
α2dt2 + dt⊗ η + η ⊗ dt+ g

)
, α2 = ±v2 + |η|2.

θ is a Codazzi tensor if and only if RicG
(

∂
∂t − η,X

)
= 0, X ∈ TM .

(ii) θ is a Codazzi tensor and

v;ij −
1

δ
θli;j θ̂

lkv;k +

(
log

δ

K

)
;jv;i +

K

δ
((tr θ) θij − δgij) v

=
1

δ
θil

(
Kglj −Kαl

j +
K;j

K
αlk

;k − αlk
;kj

)
holds for some 2-form α and v > 0 where δ = det θ.

(iii) ∂M = ∅, det θ > 0 and for some v > 0 the Minkowski formula

1

2

∫
M

trαdµ =

∫
M

v((α, θ)) dµ

holds for all Codazzi tensor α.

...

(i): comparable to Hadamard’s convexity theorem (Lemma 1.5):

1

2
L ∂

∂t
G = −G ←→ 1

2
L−r ∂

∂r
G0 = −G0, G0 = dx2 + dy2 + dz2

(ii): an integrability condition for the vector field η (cf. Lemma 2.2 (iii)).

(iii): We rely upon the theory of elliptic PDE.

...

Corollary 1.3 and thus Proposition 1.4 (i) are relevant to the ellipticity of Λδ or λθ for θ ∈ Γ(Eδ).
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2.3 Ellipticity

Proposition 2.5. (i) λθ is elliptic ⇐⇒ det θ > 0.

(ii) ∂M = ∅ and det θ > 0⇒ dimkerλθ = dimkerλ∗
θ − 3χ(M).

Proof. (i): The symbol of λθ has non-trivial kernel ⇐⇒ ∃ξ ̸= 0; ((θ, ξ⊗ξ)) = θ̂(ξ, ξ) = 0 ⇐⇒ det θ ≤ 0.

(ii): Atiyah-Singer index formula.*1

Corollary 2.6. M = S2 or RP2 ⇒ kerλg = 0.

Proof. From Lemma 2.2 (v), dimkerλg = dimConf(M, g) = 3χ(M) for M = S2, RP2.

Standard proof uses Weizenböck formula |∇◦
α|2 + 2K|◦α|2 =

1

2
|∇trα|2 − (α̂ijαij

;k);k + (α̂ijαik
;k);j

and the formulas −∆ρ+Kg = e2ρK̃ and div α̂− (trgα)dρ = e2ρd̃iv α̂ for g̃ = e2ρg.

Theorem 2.7. If M = S2 or RP2 there is a neighborhood U ⊂ Γ(E+) of [g]+ such that Σ(M, g,det θ)∩
U = {±θ} for θ ∈ U .

Proof. Apply the implicit function theorem to

Ψ: Diff(M)× C∞(M)→ Γ(E+); Ψ(ϕ, u) = e2uϕ∗g

at (id, 1) (Figure 6) and the Herglotz formula (Proposition 1.4).

g + 1
2Lηg ∈ [θ]+

g

[g]+

U
θ

[θ]+

{ϕ∗g| ϕ ∈ Diff(M)}

{g + 1
2Lηg| η ∈ Γ(TM)}

ϕ∗g ∈ [θ]+

0

Figure 6 The orbit of g ∈ Γ(E+) by Diff(M) and its tangent space for M = S2 or RP2

Question 2.8. What is the Obata equation for kerλ∗
θ?

*1 M. F. Atiyah and I. M. Singer, The index of elliptic operators on compact manifolds, Bull. Amer. Math. Soc. 69

(1963), 422–433.
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3 The frontispiece

Figure 21915 shows the outer part of the closed surface((
x2 + y2

)2
+ 4xy

)2

+
((

x2 + y2 + 1
)2 − 2(x− y)2

)2 (
z2 − d2

)
= 0

of genus 2 with d = 3
4 . This surface M is a union of Cassini ovals and the boundary ∂M is a pair

of lemniscates of Bernoulli which are curvature lines of principal curvature zero and whose nodes are

umbilic points of index −1. As is obvious from the figure and Lemma 1.5 the 2nd fundamental form is

within range of the 1st fundamental form. If 3
4 ≤ d < 1, M+ is connected. Its boundary ∂M+ contains

∂M and other branch components from the two umbilic points which enclose negatively curved region.

Accordingly the total curvature of M+ exceeds 4π. It is interesting to know whether the surface M is

bendable or not.

Proposition 2.3 (ii), Proposition 2.5 (i) and also Lemma 2.2 (ii) suggest to intuition that asymptotic

curves (not drawn in the figure) in the region where K < 0 mediate regularity property which stiffens

the surface. So we ignore for a while the problem arising from negatively curved part. Then what we

are interested in is how to formulate Lemma 1.7 in the style of §2. It may be appropriate to think of

M+ to be the closure of {x ∈ M | δ(x) > 0}. We see however from Lemma 2.2 (i) that the condition∫
M+

δ dµ = 4π does not imply that the nullity of θ ∈ Σδ on ∂M+ is tangent to ∂M+ even if M+ is

connected, and moreover if θ ∈ Σδ is within range of g. We need at least some adjustment of θ ∈ Σδ by

scaling. From another point of view θ ∈ Σδ is a Rimannian metric of the interior
◦
M+. In the situation

of Lemma 1.7 we see that θ/δ = h/K is a complete metric of
◦
M+ whose area-growth is of length order

if θ ̸= 0 on ∂M+.

To deal with bendability question, it may be easier to consider things infinitesimally. Let {ht ∈ Σδ}
be smooth 1-parameter family and θ = h0, θ̇ = d

dtht|t=0, θ̈ = d2

dt2ht|t=0,..., θ
(k) = dk

dtk
ht|t=0. That is, we

have the following expansion

ht = θ + tθ̇ +
t2

2
θ̈ +

t3

3!
θ(3) + · · ·+ tk

k!
θ(k) + · · ·

Then div θ̂(k) = 0, ((θ̇, θ)) = 0 and ((θ̈, θ)) = −det θ̇. These equalities are enough to rewrite Proposition 1.1

for infinitesimal deformations. This also makes it clearer that the Herglotz formula is a higher order

variation of the Minkowski formula. Still higher variations are obtained from

((θ̈, θ)) = −δ1 ((θ(3), θ)) = − 3
2 δ̇1

((θ(4), θ)) = −2δ̈1 + δ2 ((θ(5), θ)) = − 5
2δ

(3)
1 + 5

2 δ̇2

((θ(6), θ)) = −3δ(4)1 + 9
2 δ̈2 − δ3 ((θ(7), θ)) = − 7

2δ
(5)
1 + 7δ

(3)
2 − 7

2 δ̇3

...

where δ(k) = det θ(k).
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Not only in some details but also on the whole we find situations analogous to zero mean curvature

surfaces in Minkowski 3-space. The expansion from M+ to whole M may be compared to a maximal

surface in Minkowski 3-space which extends to a zero mean curvature surface with transition from

spacelike part to timelike part.

...

4 In place of closing
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Figure 787 : From symphony no. 1 by G. Mahler

∗ ∗ ∗ UY 60 ∗ ∗ ∗
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