Time and Place: 13:20-14:20, March 6, 2022, Yokohama
Speaker: Osamu Kobayashi
Title: On an endnote of "A profile of Prof. Masaaki Umehara and Prof. Kotaro Yamada's achievements" Abstract: The speaker would like to discuss endnote 29 of an article of Sugaku 73, MSJ, of the title.

Figure 21915. $M:\left(\left(x^{2}+y^{2}\right)^{2}+4 x y+1\right)\left(4-\sqrt{9-16 z^{2}}\right)=4$

Contents

1 The Herglotz integral formula and rigidity theorems 1
1.1 Notation and terminology 1
1.2 The Herglotz formula 3
1.3 Rigidity theorems 4
2 An intrinsic formulation 6
$2.1 \quad \Sigma(M, g, \delta)$ 6
2.2 Convexity conditions 7
2.3 Ellipticity 8
3 The frontispiece 9
4 In place of closing 10

1 The Herglotz integral formula and rigidity theorems

1.1 Notation and terminology

1. compact connected surface (M, g)
$-M$ may have boundary ∂M but we often tacitly assume $\partial M=\emptyset$.
2. the Gauss curvature $K=K_{g}$

$$
M_{+}=\overline{\{x \in M \mid K(x)>0\}}
$$

3. the traceless part of $E=\left\{A \in T^{*} M \otimes T^{*} M \mid A(X, Y)=A(Y, X)\right\}$

$$
\begin{aligned}
& \stackrel{\circ}{E}=\{A \in E \mid \operatorname{tr} A=0\} \\
& A=\frac{1}{2}(\operatorname{tr} A) g+\AA \\
& \hat{A}=\frac{1}{2}(\operatorname{tr} A) g-\AA
\end{aligned}
$$

4. the cofactor tensor \hat{A} of $A: J \in \operatorname{End}(T M)$ is such that $J^{2}=-1$ and $\operatorname{tr}_{g} J=0$.

$$
\begin{aligned}
\hat{A}(X, Y) & =A(J X, J Y) \\
\langle\hat{A}, A\rangle & =2 \operatorname{det} A
\end{aligned}
$$

5. Codazzi tensor $A \in \Gamma(E)$:

$$
\begin{aligned}
\nabla_{X} A(Y, Z) & =\nabla_{Z} A(Y, X) \\
\operatorname{div} \hat{A} & =\left(A_{j ; i}^{i}\right)=0
\end{aligned}
$$

6. The determinant norm of E or polarization of det:

$$
((A, B)):=\operatorname{det}_{g}\left(\frac{A+B}{2}\right)-\operatorname{det}_{g}\left(\frac{A-B}{2}\right)=\frac{1}{2}\langle\hat{A}, B\rangle, \quad \operatorname{sgn}=(+--)
$$

7. conformal classes $[\theta]$ and $[\theta]_{+}, \theta \in \Gamma(E)$:

$$
\begin{aligned}
{[\theta] } & =\left\{v \theta \in \Gamma(E) \mid v \in C^{\infty}(M)\right\} \\
{[\theta]_{+} } & =\left\{e^{2 u} \theta \in \Gamma(E) \mid u \in C^{\infty}(M)\right\} \subset[\theta]
\end{aligned}
$$

8. $\theta \in \Gamma(E)$ is within range of $g \stackrel{\text { def }}{\Longrightarrow} \exists \eta \in \Gamma(T M)$ such that

$$
g+\frac{1}{2} L_{\eta} g \in[\theta]_{+} .
$$

9. $E^{\delta}, \delta \in C^{\infty}(M)$ and $E_{\theta}, \theta \in \Gamma\left(E^{\delta}\right) \subset \Gamma(E)$
$E^{\delta}:=\left\{\theta \in E \mid \operatorname{det}_{g} \theta=\delta\right\}, \quad E_{ \pm}^{\delta}:=\left\{\theta \in E^{\delta} \mid \theta\right.$ is positive/negative definite $\}$

Figure $1 \quad E \cap\left(T_{p}^{*} M \otimes T_{p}^{*} M\right), \delta>0$

$$
E_{\theta}:=\{A \in E \mid((\theta, A))=0\} \simeq T_{\theta} E^{\delta}
$$

Figure $2 \quad E_{\theta} \| T_{\theta} E^{\operatorname{det} \theta}, \operatorname{det} \theta>0 \Rightarrow(()) \mid, E_{\theta}<0$.

1.2 The Herglotz formula

Proposition 1.1 (The Herglotz integral formula). ν denotes the outward unit normal along ∂M.
Assume : $\theta_{i} \in \Gamma\left(E^{\delta}\right)$ are Codazzi tensors, and $g+\frac{1}{2} L_{\eta_{i}} g=v_{i} \theta_{i}, \quad i=1,2$.

$$
\text { Then : } \int_{M}\left(v_{1}+v_{2}\right) \operatorname{det}\left(\theta_{1}-\theta_{2}\right) d \mu=\int_{\partial M}\left(\hat{\theta}_{1}-\hat{\theta}_{2}\right)\left(\nu, \eta_{1}-\eta_{2}\right) d s
$$

Proof. From (1) and (2) below and the divergence theorem:
(1) $\left(v_{1}+v_{2}\right) \operatorname{det}\left(\theta_{1}-\theta_{2}\right)=\left(\left(\theta_{1}-\theta_{2}, L_{\eta_{1}-\eta_{2}} g\right)\right)$:
r.h.s. $=\left(\left(\theta_{1}-\theta_{2}, 2\left(v_{1} \theta_{1}-v_{2} \theta_{2}\right)\right)\right)=\left(\left(\theta_{1}-\theta_{2},\left(v_{1}+v_{2}\right)\left(\theta_{1}-\theta_{2}\right)\right)\right)=$ l.h.s. because $\operatorname{det} \theta_{1}=\operatorname{det} \theta_{2}=\delta$.
(2) $\left(\left(\theta_{1}-\theta_{2}, L_{\eta_{1}-\eta_{2}} g\right)\right)=\operatorname{div}\left(\left(\hat{\theta}_{1}-\hat{\theta}_{2}\right)\left(\cdot, \eta_{1}-\eta_{2}\right)\right)$:

$$
\left(\left(\theta_{1}-\theta_{2}, L_{\eta_{1}-\eta_{2}} g\right)\right)=\left\langle\hat{\theta}_{1}-\hat{\theta}_{2}, \frac{1}{2} L_{\eta_{1}-\eta_{2}} g\right\rangle=\left\langle\hat{\theta}_{1}-\hat{\theta}_{2}, \nabla\left(\eta_{1}-\eta_{2}\right)\right\rangle \text { and } \operatorname{div}\left(\hat{\theta}_{1}-\hat{\theta}_{2}\right)=0
$$

Lamma 1.2. $\operatorname{det} \theta_{1}=\operatorname{det} \theta_{2} \Rightarrow \theta_{1}-\theta_{2} \in E_{\theta_{1}+\theta_{2}}$.
Proof. $\left(\left(\theta_{1}+\theta_{2}, \theta_{1}-\theta_{2}\right)\right)=\left(\left(\theta_{1}, \theta_{1}\right)\right)-\left(\left(\theta_{2}, \theta_{2}\right)\right)=\operatorname{det} \theta_{1}-\operatorname{det} \theta_{2}=0$.

Figure $3 \theta_{1}+\theta_{2} \perp_{\operatorname{det}} \theta_{1}-\theta_{2}$ in E

Corollary 1.3. $\operatorname{det} \theta_{1}=\operatorname{det} \theta_{2}$ and $\operatorname{det}\left(\theta_{1}+\theta_{2}\right)>0 \Rightarrow \operatorname{det}\left(\theta_{1}-\theta_{2}\right)<0$ unless $\theta_{1}=\theta_{2}$.
Proof. ((,)) is negative definite on $E_{\theta_{1}+\theta_{2}}$ (Figure3).

Proposition 1.4 (The Herglotz integral formula in practicable form).
Assume :
(i) $\operatorname{det} \theta_{1}=\operatorname{det} \theta_{2}>0$;
(ii) both θ_{1} and θ_{2} are Codazzi tensors;
(iii) both θ_{1} and θ_{2} are within range of g;
(iv) if M has boundary,
$\operatorname{det} \theta_{1}=\operatorname{det} \theta_{2}=0$ on ∂M ((i) overridden) and
∂M consists of curves whose tangent is the nullity of both θ_{1} and θ_{2}.
Then : either $\theta_{1}=\theta_{2}$ or $\theta_{1}=-\theta_{2}$;

Proof. Replace θ_{2} by $-\theta_{2}$ if necessary, and we may assume $\operatorname{det}\left(\theta_{1}+\theta_{2}\right)>0$.
(iv) \Rightarrow the boundary integral of Proposition $1.1=0$ since $\hat{\theta}_{i}(\nu, \cdot)=\theta_{i}(J \nu, J \cdot)=0$ on ∂M.
(iii) $\Rightarrow \int_{M}\left(v_{1}+v_{2}\right) \operatorname{det}\left(\theta_{1}-\theta_{2}\right) d \mu=0$ with $v_{1}+v_{2}>0$.

Corollary $1.3 \Rightarrow \theta_{1}=\theta_{2}$.

1.3 Rigidity theorems

Lamma 1.5 (Hadamard). If $\partial M=\emptyset$ and $K>0$, the 2nd fundamental form of an isometric immersion of M in \mathbf{R}^{3} is withn range of g (Figure 4).

Figure 4 The condition (iii): $\eta \in \Gamma(T M)$ is the orthogonal projection of $-r \frac{\partial}{\partial r}$ to $T M$.

Theorem 1.6 (Cohn-Vossen 1927, Herglotz 1943). A closed surface in \mathbf{R}^{3} with $K>0$ is rigid.
－pou sto：$\partial M=\emptyset, M \subset \mathbf{R}^{3}$（immersion）$\Rightarrow M_{+} \neq \emptyset$.
Lamma 1.7 （Kuiper）．If $M_{+} \subset \mathbf{R}^{3}$ is connected and $\int_{M_{+}} K d \mu=4 \pi$ ，the $2 n d$ fundamental form of M_{+} is within range of g and ∂M_{+}consists of curvature lines of principal curvature 0 （Figure 5）．

Proof．The image of the Gauss map of ∂M_{+}contains only finitely many points by Kuiper＇s tightness argument which extends the Hadamard theorem（Lemma 1．5）．

Theorem 1.8 （Alexandorov 1938）．If $M_{+} \subset \mathbf{R}^{3}$ is connected and $\int_{M_{+}} K d \mu=4 \pi, M_{+}$is rigid．

Figure $5 \quad M_{+}: \sqrt{x^{2}+y^{2}}-\sqrt{1-z^{2}}=\sqrt{2}$

Theorem 1.8 says that the maximal region M_{+}of positively curved part of a surface has a tendency to be unbendable．Moreover in some examples the rigidity property of M_{+}spreads over the whole of M ．

Theorem 1.9 （Nirenberg 1963）．A torus of revolution is rigid．

References

－W．Klingenberg，Eine Vorlensung über Differentialgeomtrie，Springer， 1973.日本語訳：小畠守男，微分幾何学，海外出版貿易， 1975.
－M．Spivak，A comprehenive introduction to differential geometry，Publish or Perish， 1975.

2 An intrinsic formulation

$2.1 \quad \Sigma(M, g, \delta)$

Definition 2.1. (i) For $\delta \in C^{\infty}(M)$,

$$
\begin{aligned}
& \Sigma^{\delta}=\Sigma(M, g, \delta)=\left\{\theta \in \Gamma\left(E^{\delta}\right) \mid \Lambda^{\delta} \theta=0\right\} \\
& \Lambda^{\delta}: \Gamma\left(E^{\delta}\right) \rightarrow \Gamma(T M) ; \Lambda^{\delta} \theta=\operatorname{div} \hat{\theta}=\left(\hat{\theta}_{i}{ }^{j} ; j\right)
\end{aligned}
$$

(ii) (the linearization of $\left.\Lambda^{\delta}\right)$ For $\theta \in \Gamma\left(E^{\delta}\right)$,

$$
\lambda_{\theta}: \Gamma\left(E_{\theta}\right) \rightarrow \Gamma(T M) ; \lambda_{\theta} \alpha=\operatorname{div} \hat{\alpha}
$$

(iii) $C: \Gamma\left(E \backslash E^{0}\right) \rightarrow \Gamma(T M)$;

$$
C(\theta)=\frac{\theta(\operatorname{div} \hat{\theta}, \cdot)}{\operatorname{det} \theta}
$$

depends only on $[\theta]_{+}$. We say $[\theta]_{+}$is a conformally Codazzi class if $d C(\theta)=0$.
Lamma 2.2. (i) $c \in \mathbf{R}, \theta \in \Sigma^{\delta} \Rightarrow c \theta \in \Sigma^{c^{2}} \delta$.
(ii) $[\theta]$ contains at most one Codazzi tensor up to a constant multiple.
(iii) For $\theta \in \Gamma\left(E \backslash E^{0}\right)$,
\exists Codazzi tensor $\in[\theta]_{+} \Longleftrightarrow[\theta]_{+}$is a coformally Codazzi class and $[C(\theta)]=0 \in H^{1}(M, \mathbf{R})$.
(iv) The formal adjoint of λ_{θ} is given as $\lambda_{\theta}^{*} \eta=-\frac{1}{2} \widehat{L_{\eta} g}+v \hat{\theta}, v=\frac{1}{|\theta|^{2}}\langle\theta, \nabla \eta\rangle$.
(v) $\operatorname{ker} \lambda_{\theta}^{*}=\left\{\eta \in \Gamma(T M) \mid L_{\eta} g \in[\theta]\right\}$.

- Relation to the surface theory: $N(k)$ denotes 3-dim space form of constant curvature k

$$
\text { (the 2nd f.f. of }(M, g) \rightarrow N(k)) \in \Sigma\left(M, g, K_{g}-k\right)
$$

- Rigidity \& Unbendability:

$$
\begin{array}{r}
\theta \in \Gamma\left(E^{\delta}\right) \text { is 'rigid' } \leftarrow \Sigma(M, g, \delta)=\{ \pm \theta\} \\
\theta \in \Gamma\left(E^{\delta}\right) \text { is 'unbendable' } \leftarrow \operatorname{ker} \lambda_{\theta}=0(\text { near } \theta)
\end{array}
$$

Proposition 2.3. Assume $\partial M=\emptyset$.
(i) $\quad \chi(M) \neq 0 \Rightarrow \Sigma(M, g,-1)=\emptyset$.
(ii) $\quad \chi(M) \neq 0 \Rightarrow \Sigma(M, g, 0)=\{0\}$.
(iii) $\quad \chi(M) \leq 0 \Rightarrow\{ \pm g\} \subset \Sigma(M, g, 1)$ strictly, and dim ker $\lambda_{g}=\max \{2,-3 \chi(M)\}$.

Proof. (i): Poincaré-Hopf. (ii): ruled surface theorem \& singular ODE.
(iii): Riemann-Roch \& orientatioin coveing trick.

The standard product metric g of T^{2} is a counterexmple for the converses of (i) and (ii).

2.2 Convexity conditions

Recall:

$$
[\theta]_{+}=\left\{e^{2 u} \theta \in \Gamma(E) \mid u \in C^{\infty}(M)\right\} \subset[\theta]=\left\{v \theta \in \Gamma(E) \mid v \in C^{\infty}(M)\right\}
$$

and

$$
\begin{array}{r}
\theta \in \Gamma(E) \text { is within range of } g \stackrel{\text { def }}{\Longleftrightarrow} \exists \eta \in \Gamma(T M) ; g+\frac{1}{2} L_{\eta} g \in[\theta]_{+} \\
\Longleftrightarrow \exists \eta \in \Gamma(T M), \exists v \in C^{\infty}(M), v>0 ; g+\frac{1}{2} L_{\eta} g=v \theta .
\end{array}
$$

Obviously

$$
\theta \in[g]_{+} \text {is within range of } g .
$$

This is a special case of the following:

Proposition 2.4. The following are sufficient conditions for θ to be within range of g.
(i) θ is the 2nd fundamental form of $M \times\{0\}$ in $M \times \mathbf{R}$ with the metric of the form

$$
G=e^{-2 t}\left(\alpha^{2} d t^{2}+d t \otimes \eta+\eta \otimes d t+g\right), \quad \alpha^{2}= \pm v^{2}+|\eta|^{2} .
$$

θ is a Codazzi tensor if and only if $\operatorname{Ric}_{G}\left(\frac{\partial}{\partial t}-\eta, X\right)=0, X \in T M$.
(ii) θ is a Codazzi tensor and

$$
\begin{array}{r}
v_{; i j}-\frac{1}{\delta} \theta_{l i ; j} \hat{\theta}^{l k} v_{; k}+\left(\log \frac{\delta}{K}\right) ; ; v_{; i}+\frac{K}{\delta}\left((\operatorname{tr} \theta) \theta_{i j}-\delta g_{i j}\right) v \\
=\frac{1}{\delta} \theta_{i l}\left(K g_{j}^{l}-K \alpha^{l}{ }_{j}+\frac{K_{; j}}{K} \alpha^{l k}{ }_{; k}-\alpha^{l k} ; k j\right)
\end{array}
$$

holds for some 2-form α and $v>0$ where $\delta=\operatorname{det} \theta$.
(iii) $\partial M=\emptyset$, $\operatorname{det} \theta>0$ and for some $v>0$ the Minkowski formula

$$
\frac{1}{2} \int_{M} \operatorname{tr} \alpha d \mu=\int_{M} v((\alpha, \theta)) d \mu
$$

holds for all Codazzi tensor α.
(i): comparable to Hadamard's convexity theorem (Lemma 1.5):

$$
\frac{1}{2} L_{\frac{\partial}{\partial t}} G=-G \quad \longleftrightarrow \quad \frac{1}{2} L_{-r \frac{\partial}{\partial r}} G_{0}=-G_{0}, G_{0}=d x^{2}+d y^{2}+d z^{2}
$$

(ii): an integrability condition for the vector field η ($c f$. Lemma 2.2 (iii)).
(iii): We rely upon the theory of elliptic PDE.

Corollary 1.3 and thus Proposition 1.4 (i) are relevant to the ellipticity of Λ^{δ} or λ_{θ} for $\theta \in \Gamma\left(E^{\delta}\right)$.

2.3 Ellipticity

Proposition 2.5. (i) λ_{θ} is elliptic $\Longleftrightarrow \operatorname{det} \theta>0$.
(ii) $\partial M=\emptyset$ and $\operatorname{det} \theta>0 \Rightarrow \operatorname{dim} \operatorname{ker} \lambda_{\theta}=\operatorname{dim} \operatorname{ker} \lambda_{\theta}^{*}-3 \chi(M)$.

Proof. (i): The symbol of λ_{θ} has non-trivial kernel $\Longleftrightarrow \exists \xi \neq 0 ;((\theta, \xi \otimes \xi))=\hat{\theta}(\xi, \xi)=0 \Longleftrightarrow \operatorname{det} \theta \leq 0$. (ii): Atiyah-Singer index formula. ${ }^{* 1}$

Corollary 2.6. $M=S^{2}$ or $\mathbf{R P}^{2} \Rightarrow \operatorname{ker} \lambda_{g}=0$.
Proof. From Lemma $2.2(\mathrm{v})$, dim ker $\lambda_{g}=\operatorname{dim} \operatorname{Conf}(M, g)=3 \chi(M)$ for $M=S^{2}, \mathbf{R P}^{2}$.
Standard proof uses Weizenböck formula $\left|\nabla{ }^{\circ}\right|^{2}+2 K|\stackrel{\circ}{\alpha}|^{2}=\frac{1}{2}|\nabla \operatorname{tr} \alpha|^{2}-\left(\hat{\alpha}^{i j} \alpha_{i j}{ }^{; k}\right)_{; k}+\left(\hat{\alpha}^{i j} \alpha_{i k}{ }^{; k}\right)_{; j}$ and the formulas $-\Delta \rho+K_{g}=e^{2 \rho} \tilde{K}$ and $\operatorname{div} \hat{\alpha}-\left(\operatorname{tr}_{g} \alpha\right) d \rho=e^{2 \rho} \operatorname{div} \hat{\alpha}$ for $\tilde{g}=e^{2 \rho} g$.

Theorem 2.7. If $M=S^{2}$ or $\mathbf{R P}^{2}$ there is a neighborhood $U \subset \Gamma\left(E_{+}\right)$of $[g]_{+}$such that $\Sigma(M, g, \operatorname{det} \theta) \cap$ $U=\{ \pm \theta\}$ for $\theta \in U$.

Proof. Apply the implicit function theorem to

$$
\Psi: \operatorname{Diff}(M) \times C^{\infty}(M) \rightarrow \Gamma\left(E_{+}\right) ; \Psi(\phi, u)=e^{2 u} \phi^{*} g
$$

at (id, 1) (Figure 6) and the Herglotz formula (Proposition 1.4).

Figure 6 The orbit of $g \in \Gamma\left(E_{+}\right)$by $\operatorname{Diff}(M)$ and its tangent space for $M=S^{2}$ or $\mathbf{R P}^{2}$

Question 2.8. What is the Obata equation for $\operatorname{ker} \lambda_{\theta}^{*}$?

[^0]
3 The frontispiece

Figure 21915 shows the outer part of the closed surface

$$
\left(\left(x^{2}+y^{2}\right)^{2}+4 x y\right)^{2}+\left(\left(x^{2}+y^{2}+1\right)^{2}-2(x-y)^{2}\right)^{2}\left(z^{2}-d^{2}\right)=0
$$

of genus 2 with $d=\frac{3}{4}$. This surface M is a union of Cassini ovals and the boundary ∂M is a pair of lemniscates of Bernoulli which are curvature lines of principal curvature zero and whose nodes are umbilic points of index -1 . As is obvious from the figure and Lemma 1.5 the 2 nd fundamental form is within range of the 1 st fundamental form. If $\frac{3}{4} \leq d<1, M_{+}$is connected. Its boundary ∂M_{+}contains ∂M and other branch components from the two umbilic points which enclose negatively curved region. Accordingly the total curvature of M_{+}exceeds 4π. It is interesting to know whether the surface M is bendable or not.

Proposition 2.3 (ii), Proposition 2.5 (i) and also Lemma 2.2 (ii) suggest to intuition that asymptotic curves (not drawn in the figure) in the region where $K<0$ mediate regularity property which stiffens the surface. So we ignore for a while the problem arising from negatively curved part. Then what we are interested in is how to formulate Lemma 1.7 in the style of $\S 2$. It may be appropriate to think of M_{+}to be the closure of $\{x \in M \mid \delta(x)>0\}$. We see however from Lemma 2.2 (i) that the condition $\int_{M_{+}} \delta d \mu=4 \pi$ does not imply that the nullity of $\theta \in \Sigma^{\delta}$ on ∂M_{+}is tangent to ∂M_{+}even if M_{+}is connected, and moreover if $\theta \in \Sigma^{\delta}$ is within range of g. We need at least some adjustment of $\theta \in \Sigma^{\delta}$ by scaling. From another point of view $\theta \in \Sigma^{\delta}$ is a Rimannian metric of the interior $\stackrel{\circ}{M}{ }_{+}$. In the situation of Lemma 1.7 we see that $\theta / \delta=h / K$ is a complete metric of $\stackrel{\circ}{M}_{+}$whose area-growth is of length order if $\theta \neq 0$ on ∂M_{+}.

To deal with bendability question, it may be easier to consider things infinitesimally. Let $\left\{h_{t} \in \Sigma^{\delta}\right\}$ be smooth 1-parameter family and $\theta=h_{0}, \dot{\theta}=\left.\frac{d}{d t} h_{t}\right|_{t=0}, \ddot{\theta}=\left.\frac{d^{2}}{d t^{2}} h_{t}\right|_{t=0}, \ldots, \theta^{(k)}=\left.\frac{d^{k}}{d t^{k}} h_{t}\right|_{t=0}$. That is, we have the following expansion

$$
h_{t}=\theta+t \dot{\theta}+\frac{t^{2}}{2} \ddot{\theta}+\frac{t^{3}}{3!} \theta^{(3)}+\cdots+\frac{t^{k}}{k!} \theta^{(k)}+\cdots
$$

Then $\operatorname{div} \hat{\theta}^{(k)}=0,((\dot{\theta}, \theta))=0$ and $((\ddot{\theta}, \theta))=-\operatorname{det} \dot{\theta}$. These equalities are enough to rewrite Proposition 1.1 for infinitesimal deformations. This also makes it clearer that the Herglotz formula is a higher order variation of the Minkowski formula. Still higher variations are obtained from

$$
\begin{aligned}
((\ddot{\theta}, \theta)) & =-\delta_{1} & \left(\left(\theta^{(3)}, \theta\right)\right) & =-\frac{3}{2} \dot{\delta}_{1} \\
\left(\left(\theta^{(4)}, \theta\right)\right) & =-2 \ddot{\delta}_{1}+\delta_{2} & \left(\left(\theta^{(5)}, \theta\right)\right) & =-\frac{5}{2} \delta_{1}^{(3)}+\frac{5}{2} \dot{\delta}_{2} \\
\left(\left(\theta^{(6)}, \theta\right)\right) & =-3 \delta_{1}^{(4)}+\frac{9}{2} \ddot{\delta}_{2}-\delta_{3} & \left(\left(\theta^{(7)}, \theta\right)\right) & =-\frac{7}{2} \delta_{1}^{(5)}+7 \delta_{2}^{(3)}-\frac{7}{2} \dot{\delta}_{3}
\end{aligned}
$$

where $\delta^{(k)}=\operatorname{det} \theta^{(k)}$.

Not only in some details but also on the whole we find situations analogous to zero mean curvature surfaces in Minkowski 3-space. The expansion from M_{+}to whole M may be compared to a maximal surface in Minkowski 3 -space which extends to a zero mean curvature surface with transition from spacelike part to timelike part.

4 In place of closing

Sehr zurückhaltend
Sehr langsam u. immer noch

Poco acceler.

Tempo Sehr breites

Wieder zurückhaltend
Tempo Noch breiter als vorher

Figure 787: From symphony no. 1 by G. Mahler

[^0]: ${ }^{* 1}$ M. F. Atiyah and I. M. Singer, The index of elliptic operators on compact manifolds, Bull. Amer. Math. Soc. 69 (1963), 422-433.

